Contact Us
    We are committed to protecting and respecting your privacy. Please review our privacy policy for more information. If you consent to us contacting you for this purpose, please tick above. By clicking Register below, you consent to allow Orion Innovation to store and process the personal information submitted above to provide you the content requested.
  • This field is for validation purposes and should be left unchanged.
70%
Reduction of errors
80%
Reduction of P1 incidents

The client is an international corporation specializing in track & trace process implementation, which ensures end-to-end supply chain monitoring and traceability.

Challenge

The Orion team developed a QA process using a manual and automated (Apium) approach to:

  • Categorize erroneous data
  • Identify patterns leading to process failures
  • Inspect the QA environment to validate the process in production

The team also automated the bug reporting system throughout the entire product lifecycle and recommended improvements in the existing system based on bugs identified during usability tests.

By combining big data within the QA process, the end-to-end testing workflow and methodology (including reporting, metrics, and KPIs) helped the client automatically simulate every possible end-user action using Katalon Studio + Java. The Orion team also created re-usable blocks of automated tests, enabling the client to customize test cases.

Solution

The client brought in Orion to develop a digital solution. Our Subject Matter Experts (SMEs) and technical consultants hyper-collaborated with the client to assess the existing Configure to Quote (CPQ) business process, including the backend applications and infrastructure. Our team explored the option of implementing an off-the-shelf solution, but found that this would just introduce more complexity, tech debt, and custom integration. Instead, the team built a personalized platform that seamlessly integrated with the organization’s systems, streamlined the quoting process with e-commerce functionality, and provided valuable insights with analytics. 

Tools used included:

  • Grafana
  • Superset analytical tools
  • Python
  • Postman
  • Orchestrated SQL queries

Impact

The implemented automated QA process proactively identified gaps in the client’s business process and functionality. Within a year of implementation, errors were reduced by 70% and P1 incidents were reduced by 80%. Orion’s module-based automation scenarios covered more than 95% of track & trace E2E test cases, driving improved logistics as errors were identified in advance.

Operations Management
Learn more about how we are helping organizations ensure their products are go-to-market ready.
Quality Engineering